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The structure of the coincidence symmetry group of an arbitrary n-dimensional

lattice in the n-dimensional Euclidean space is considered by describing a set of

generators. Particular attention is given to the coincidence isometry subgroup

(the subgroup formed by those coincidence symmetries that are elements of the

orthogonal group). Conditions under which the coincidence isometry group can

be generated by reflections defined by vectors of the lattice are discussed and an

algorithm to decompose an arbitrary element of the coincidence isometry group

in terms of reflections defined by vectors of the lattice is given.

1. Introduction

The mathematical theory of the coincidence site lattice (CSL)

can be used to describe certain phenomena that arise in the

physics of interfaces and grain boundaries [for a more detailed

background in CSL theory, we refer readers to the references,

especially Baake (1997), Bollmann (1970) and Grimmer

(1973)]. Because of the success of the models for crystalline

interfaces based on the properties of CSL and related lattices

(Brandon et al., 1964; Bollmann, 1970; Warrington & Bufalini,

1971; Grimmer, 1973, 1976), the focus of the CSL theory has

been mostly on the coincidence of two lattices of the same

dimensions (the coincidence of two lattices of different

dimensions can be easily reduced to the same dimension case).

Fortes (1983a,b) developed a matrix theory of CSL by using

the normal form of an integer matrix. In his first paper, Fortes

(1983a) gave a crystallographic interpretation of the invariant

set of an integer matrix and applied it to solve the degree of

coincidence problem of two lattices in arbitrary dimensions. In

the subsequent paper (Fortes, 1983b), the theory was extended

to include displacement shift complete (DSC) lattices and a

method to calculate bases for these lattices via some special

factorizations of the related matrices was provided. Duneau et

al. (1992) further developed the matrix theory of CSL by using

the normal form of an integer matrix and gave a method to

decompose the corresponding matrix into associated shear

transformations. Pleasants et al. (1996) used number theory to

solve the planar coincidences for N-fold symmetry. Baake

(1997) used the factorization properties of certain number

fields to solve the coincidence problem for dimensions up to 4.

Recently, Aragón et al. (2001) and Rodrı́guez et al. (2005)

developed a different approach to coincidence isometry

theory by using geometric algebra (Clifford algebra) as a tool.

From the works in the literature, problems on the structures of

the coincidence symmetry group of a given lattice can be

formulated. In this paper, we consider the structure of the

coincidence isometry group of a lattice in Rn.

Let L be a lattice with basis ða1; . . . ; anÞ, let V be the

n-dimensional real vector space with the same basis, let A

be a linear transformation of V and let A be the matrix of

A under the basis ða1; . . . ; anÞ. We call A a coincidence

symmetry if A is an automorphism of V and L \ AL is a

sublattice of L with finite index. If A is a coincidence

symmetry of L, we call A a coincidence matrix of L or,

abusing the language, we also call A a coincidence

symmetry. It is known (see x2) that A is a coincidence

symmetry if and only if A is a rational matrix. The set of all

coincidence symmetries (or the set of all n� n coincidence

matrices) of L forms a group under the multiplication

defined by composition (or the multiplication of matrices). If

L is a lattice of the Euclidean space Rn, then one can

consider the isometries of Rn that are coincidence sym-

metries of L. In this case, one has the coincidence isometry

subgroup formed by all the coincidence isometries (Baake,

1997). We analyze the structures of these groups by

considering the decomposition of a matrix from both

geometric and algebraic view points. Baake (1997) (see also

Pleasants et al., 1996) uses the factorization of numbers to

reduce a symmetry to irreducible ones, while the approach

developed by Aragón et al. (2001) and Rodrı́guez et al. (2005)

relies on the decomposition of a matrix into a product of

coincidence reflections. The results in Aragón et al. (2001)

stated that, if the matrix is a product of coincidence reflections,

then the corresponding symmetry is a coincidence isometry. In

Rodrı́guez et al. (2005), it was conjectured that any coin-

cidence isometry of the lattice spanned by the canonical basis

of Rn is a product of coincidence reflections. We shall prove a

theorem that includes this conjecture as a special case and use

the theorem to describe the coincidence isometry group.

In x2, we briefly recall the relevant definitions and some

known results. In x3, we prove a theorem about coincidence

isometry groups of lattices L in Rn, and apply it to describe the

structure of the coincidence isometry group. Examples are

given in x4.



2. Notation and definitions

The set of real numbers is denoted by R, the set of real n� n

matrices is denoted by MnðRÞ and the set of all non-singular

n� n real matrices is denoted by GLnðRÞ. Notation for

matrices over the rational numbers Q and the integers Z are

defined similarly. For example, GLnðZÞ denotes the set of all

invertible n� n integer matrices, so

GLnðZÞ ¼ fn� n integer matrices A with det A ¼ �1g:

We also consider the above sets of non-singular matrices as

linear transformations. For example, we also regard GLnðRÞ as

the set of all non-singular linear transformations of Rn. If we

do regard them as linear transformations, we shall specify the

basis that relates the transformations to their matrices.

By an n-dimensional lattice L with basis ða1; . . . ; anÞ, we

mean the free abelian group �n
i¼1Zai. With the basis

ða1; . . . ; anÞ, we can always define a standard inner product on

the n-dimensional real vector space �n
i¼1Rai by requiring

ða1; . . . ; anÞ to be an orthonormal basis. This defines an

isometry between the usual n-dimensional Euclidean space Rn

and�n
i¼1Rai. However, usually we need to consider a lattice in

the n-dimensional Euclidean space Rn with canonical basis

ðe1; . . . ; enÞ. In this case, we assume the lattice to be also

n-dimensional since, if the lattice has dimension m< n, then

we can always consider the m-dimensional subspace of Rn that

contains the lattice of interest. Thus, a lattice L � Rn is given

by an n� n non-singular matrix A and a basis of the lattice is

ða1; . . . ; anÞ ¼ ðe1; . . . ; enÞA: ð1Þ

We call the matrix A the structure matrix of L and use the

notation LA if we want to specify the fact that the lattice L is

given by the matrix A.

We adopt the definition that a sublattice L0 � L is a

subgroup L0 of finite index in the abelian group L. In the usual

notation, this is ½L : L0�<1. The CSL theory concerns the

problems that arise when the intersection L1 \ L2 of two

lattices happens to be a sublattice of both lattices L1 and L2. If

this is the case, we say that L1 and L2 are commensurate

lattices.

Suppose that Li is given by the structure matrix Ai; i ¼ 1; 2,

let the basis of Li be Bi. Then

Bi ¼ ðe1; . . . ; enÞAi; i ¼ 1; 2:

Theorem 2.1. Grimmer. The lattices L1 and L2 are

commensurate if and only if A�1
2 A1 is a rational matrix.

Proof. Let L0 ¼ L1 \ L2 and let B0 be a basis of L0. Then there

are integer matrices Ni (i ¼ 1; 2) such that

B1N1 ¼ B0 ¼ B2N2:

Under the assumption that L1 and L2 are commensurate, i.e.

½Li : L0�<1 (i ¼ 1; 2), the matrices Ni are non-singular, thus,

from A1N1 ¼ A2N2, we obtain A�1
2 A1 ¼ N2N�1

1 , implying that

A�1
2 A1 is a rational matrix. Conversely, if A�1

2 A1 is a rational

matrix, then there exists an integer m> 0 such that mA�1
2 A1 is

an integer matrix, say A. Then, from mA1 ¼ A2A, we have

mB1 ¼ B2A. Hence, mL1 � L0, which implies that

½L1 : L0� � mn. Symmetrically, we also have ½L2 : L0�<1.

Therefore, L1 and L2 are commensurate.

Grimmer’s theorem immediately implies the following.

Corollary 2.2. Let L be a lattice with basis ða1; . . . ; anÞ and let

A be an n� n non-singular real matrix. Then the lattice with

basis ða1; . . . ; anÞA and the lattice L are commensurate if and

only if A is a rational matrix.

However, if we view the matrix A in the above corollary as

the matrix of a linear transformation, then we need to specify

under which basis this matrix is given. In Corollary 2.2, the

matrix is given by using the basis ða1; . . . ; anÞ. Let us consider a

lattice L in Rn with the structure matrix A. Let T be a linear

transformation of Rn and let T be the matrix of T under the

canonical basis ðe1; . . . ; enÞ. Then the structure matrix of the

lattice T ðLÞ (the image of L under the transformation T ) is

TA. Then by Theorem 2.1, the lattice T ðLÞ and the lattice L

are commensurate if and only if A�1TA is rational. This leads

to the following definition.

Definition 2.3. Let LA � R
n be a lattice with the structure

matrix A. We call the group AGLnðQÞA
�1 the coincidence

symmetry group (CSG) of LA.

The isometries of Rn [with the standard inner product ð; Þ]
that provide commensurate lattices to a lattice L � Rn are of

special interest (cf. Baake, 1997; Aragón et al., 2001; Rodrı́-

guez et al., 2005). Let OðnÞ be the set of orthogonal transfor-

mations of Rn. The concept of coincidence isometry group was

defined in Baake (1997) with the notation OCðLÞ, i.e.

OCðLÞ ¼ fR 2 OðnÞ : ½L : L \RL�<1g:

For our purpose, we need a definition in terms of matrices

under the canonical basis of Rn. Let

OnðRÞ ¼ fA 2 MnðRÞ : AtA ¼ Ig:

That is, OnðRÞ is the set of n� n orthogonal real matrices.

Suppose that R 2 OðnÞ and ½L : L \RðLÞ�<1. Let R be

the matrix of R under the canonical basis, then R 2 OnðRÞ.

From the discussion preceding Definition 2.3, we conclude

that the matrix A�1RA is rational. Thus we give the following

definition.

Definition 2.4. Let LA � R
n be a lattice with the structure

matrix A. We call the group OnðR
n
Þ \ ðAGLnðQÞA

�1Þ the

coincidence isometry group (CIG) of LA.

Thus, the CIG of L is just the group OCðLÞ and we will use

both terms for our convenience.
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Example. If L ¼ Zn, then A ¼ I and OCðLÞ ¼

OnðQÞ :¼ OnðR
n
Þ \GLnðQÞ. We call the elements of OnðQÞ

rational orthogonal matrices.

In the next section, we analyze the structure of the coinci-

dence isometry group of an arbitrary lattice L in Rn.

3. Decomposition of elements of a CIG into reflections

The decomposition of an element of the CIG of a lattice

L � Rn is central in the Clifford algebra approach to the

coincidence site lattice problem developed in Aragón et al.

(2001) and Rodrı́guez et al. (2005). It was conjectured (and

proved for the planar lattices) in Rodrı́guez et al. (2005) that

any coincidence isometry of the canonical lattice Zn of Rn can

be decomposed as a product of coincidence reflections

(reflections that belong to the coincidence isometry group of

L). Note that, for the lattice Zn, the corresponding CIG is

OnðQÞ. Here, we prove a more general theorem that includes

the lattice Zn as a special case. It should be pointed out that,

although the Cartan–Dieudonné theorem (Porteous, 1995, ch.

5) says that any orthogonal n� n real matrix can be decom-

posed into a product of at most n reflections, it is clear that a

statement of coincidence isometries of certain lattices that can

be decomposed into a product of coincidence reflections is not

a direct consequence of the Cartan–Dieudonné theorem (cf.

Example 4.2 below).

Theorem 3.1. Let L � Rn be a lattice such that the reflection

defined by an arbitrary nonzero vector of L is a coincidence

isometry of L. Then any coincidence isometry of L can be

decomposed as a product of at most n reflections defined by

the vectors in L.

Proof. Let the structure matrix of L be A. Then

B ¼ ðb1; . . . ; bnÞ :¼ ðe1; . . . ; enÞA

is a basis of L. Let R 2 OðnÞ be a coincidence isometry of L.

We use induction on n to prove the theorem. It is clear that the

theorem holds for n ¼ 1. Assume that it holds for all k such

that 1 � k< n and consider the case n. We consider two cases:

Rðb1Þ ¼ b1 or Rðb1Þ 6¼ b1.

In the first case, let

V ¼ fx 2 Rn : ðx; b1Þ ¼ 0g:

Then V is an ðn� 1Þ-dimensional subspace of Rn and V is

invariant under R, i.e. RðVÞ ¼ V. Thus, R restricts to an

orthogonal transformation R0 of the ðn� 1Þ-dimensional

Euclidean subspace V. Compare the orthogonal projection

P : Rn
�!V defined by b1:

PðxÞ ¼ x�
ðx; b1Þ

ðb1; b1Þ
b1; 8x 2 R

n; ð2Þ

with the reflection of Rn defined by b1:

Rb1
ðxÞ ¼ x�

2ðx; b1Þ

ðb1; b1Þ
b1; 8x 2 R

n: ð3Þ

We can see that, under the assumption of the theorem, for

each bi (1< i � n), there exists an integer mi > 0 such that

miPðbiÞ 2 L. Let m ¼ m2 . . . mn, then mPðLÞ � L. Hence, R0

is a coincidence isometry of the ðn� 1Þ-dimensional lattice

PðLÞ [with basis ðPðb2Þ; . . . ;PðbnÞÞ] that satisfies the condi-

tion of the theorem. Therefore, by induction assumption, R0

is a product of j reflections defined by some vectors

y1; . . . ; yj 2 PðLÞ such that 1 � j � n� 1. Let xi ¼ myi,

1 � i � j. Then all xi 2 L. Let the reflection ofRn defined by xi

be Ri, then R ¼ R1 . . .Rj. Hence the theorem is proved in

this case.

In the second case, Rðb1Þ 6¼ b1, thus a :¼ Rðb1Þ � b1 6¼ 0.

Let Ra be the reflection defined by the vector a. Since R is a

coincidence isometry of L, there exists an integer t> 0 such

that ta 2 L. However, Ra ¼ Rta, so Ra can be viewed as a

reflection defined by a vector in L. Consider the coincidence

isometry RaR of L. Note that ðb1; b1Þ ¼ ðRðb1Þ;Rðb1ÞÞ, we

have (it can also be seen easily via a geometric diagram)

RaRðb1Þ ¼ Rðb1Þ �
2ðRðb1Þ; aÞ

ða; aÞ
a

¼ Rðb1Þ �
2ðRðb1Þ;Rðb1Þ � b1Þ

ðRðb1Þ � b1;Rðb1Þ � b1Þ
ðRðb1Þ � b1Þ

¼ b1:

Thus, by the first case, RaR is a product of at most n� 1

reflections defined by some vectors of L, sayRaR ¼ R1 . . .Rj

with 1 � j � n� 1. Then, since R2
a ¼ I, we conclude that

R ¼ RaR1 . . .Rj is a product of at most n reflections defined

by vectors of L. This completes the proof of the theorem.

Note that the proof of Theorem 3.1 gives a practical way to

actually decompose a coincidence isometry into a product of

coincidence reflections. We give an example in x4.

It turns out that the condition in Theorem 3.1 is sufficient

for any application purpose for which the computations

involve only rational numbers. The following theorem gives a

necessary and sufficient condition for a lattice to satisfy the

condition in Theorem 3.1.

Theorem 3.2. Let L � Rn be a lattice with structure matrix

A ¼ ðaijÞ and let ai; 1 � i � n; be the column vectors of A.

Then every nonzero vector of L defines a coincidence reflec-

tion of L if and only if the ratios

ðaj; aiÞ

ðak; akÞ
; 1 � i; j; k � n; ð4Þ

are all rational.

Proof. If every nonzero vector of L defines a coincidence

reflection of L, then, in particular, every ai (1 � i � n) defines

a coincidence reflection of L. Let Ri be the reflection defined

by ai. Then, since
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RiðajÞ ¼ aj �
2ðaj; aiÞ

ðai; aiÞ
ai; 8j; ð5Þ

we must have

ðaj; aiÞ

ðai; aiÞ
2 Q; 1 � i; j � n: ð6Þ

If ðai; akÞ 6¼ 0, then

ðai; aiÞ

ðak; akÞ
¼
ðai; akÞ

ðak; akÞ

ðai; aiÞ

ðai; akÞ

is a product of two rational numbers and hence is rational. If

ðai; akÞ ¼ 0, consider the reflection Rc defined by c ¼ ai � ak.

By assumption,Rc is a coincidence reflection of L. Thus, from

RcðaiÞ ¼ ai �
2ðai; cÞ

ðc; cÞ
c;

we have

ðai; cÞ

ðc; cÞ
¼

ðai; aiÞ

ðai; aiÞ þ ðak; akÞ
¼

1

1þ ðak;akÞ

ðai;aiÞ

is rational. Hence we also have

ðai; aiÞ

ðak; akÞ
2 Q:

Together with (6), this proves (4).

Conversely, if (4) holds, let x ¼ AX 2 L be a nonzero

vector, where X ¼ ðx1; . . . ; xnÞ
t
2 Z

n is a column vector. Then,

for any 1 � i � n,

ðai; xÞ

ðx; xÞ
¼

Pn
j¼1 xjðai; ajÞPn

s;t¼1 xsxtðas; atÞ
¼

Pn
j¼1 xj

ðai;ajÞ

ðai;aiÞPn
s;t¼1 xsxt

ðas;atÞ

ðai;aiÞ

is rational. It follows that the reflection defined by x is a

coincidence isometry of L. This completes the proof of the

theorem.

A useful consequence of Theorem 3.2 is the following.

Corollary 3.3. Let L � Rn be a lattice with the structure matrix

A. If AtA is a rational matrix, then every nonzero vector of L

defines a coincidence reflection of L and hence every coinci-

dence isometry of L can be decomposed into a product of at

most n coincidence reflections defined by the vectors of L.

Proof. Keep the notation of Theorem 3.2. Under the

assumption that AtA is rational, all ðai; ajÞ; 1 � i; j � n; are

rational, hence condition (4) holds.

A special case of Corollary 3.3 is when the matrix A is

rational.

Corollary 3.4. If A is rational, then every nonzero vector of L

defines a coincidence reflection of L and hence every coinci-

dence isometry of L can be decomposed into a product of at

most n coincidence reflections defined by the vectors of L.

The decomposition of a coincidence isometry of the lattice

L ¼ Zn into a product of coincidence reflections is just a

special case of Corollary 3.3.

By Theorem 3.1 and Theorem 3.2, we immediately obtain

the following.

Theorem 3.5. If the structure matrix A of a lattice L � Rn

satisfies condition (4), then OCðLÞ is generated by the

reflections defined by the nonzero vectors of L.

As an application, we have the following.

Theorem 3.6. For n> 1, OCðZn
Þ is infinitely generated.

To prove Theorem 3.6, we need the following fact about the

rational numbers:

Lemma 3.7. Let S be a finite subset of the rational numbers Q

and let P be the set of all the prime integers that show up in

the denominators of the reduced forms of the elements of S. If

only addition, subtraction and multiplication are allowed, then

S cannot produce rational numbers whose denominators of

the reduced forms contain prime factors not in P.

Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. Assume that n> 1 and let G ¼ OCðZn
Þ.

Under the assumption of the theorem, every nonzero vector

v 2 Zn generates an element Rv 2 G. By Corollary 2.2, the

matrix ofRv under the canonical basis ðe1; . . . ; enÞ is a rational

matrix. Since the inverse of an orthogonal matrix is its trans-

pose, G is generated as a group by the rational matrices

defined by the reflections of the nonzero vectors of Zn invol-

ving only addition, subtraction and multiplication of rational

numbers. If G is finitely generated, then there is a finite subset

S of G whose elements are rational matrices that generates G.

Let P be the set of all the prime integers that show up in the

denominators of the reduced forms of the rational numbers

involved in the elements of S. To prove the theorem, by

Lemma 3.7, we only need to show that there is a nonzero

vector v 2 Zn such that the matrix of Rv under the canonical

basis involves rational numbers whose reduced forms contain

prime factors in the denominators that are not in P.

We consider vectors of the form

v ¼ e1 þ ye2; y 2 Z;

and consider the fraction that shows up in

Rvðe1Þ ¼ e1 �
2

1þ y2
ðe1 þ ye2Þ: ð7Þ

Suppose p is the largest element in P. If we let y ¼ p1 . . . pr be

the product of the first r primes � p, then all the prime factors

of the denominator of the fraction in (7) are not in P. This

completes the proof of Theorem 3.6.

It should be pointed out that a detailed analysis of the group

of OCðZ2
Þ is contained in Baake (1997).
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4. Examples

We consider two examples in this section. In the first example,

we show how to use the procedure in the proof of Theorem 3.1

to decompose a coincidence isometry into a product of co-

incidence reflections. In the second example, we consider

special types of lattices in R2 and determine their coincidence

isometry groups.

Example 4.1. Let L � R2 be the rhombic lattice defined by the

matrix

A ¼
1 2

3

0
ffiffi
5
p

3

� �
:

Let

R ¼
� 19

21 �
4
ffiffi
5
p

21
4
ffiffi
5
p

21 � 19
21

 !
:

Then, R is an orthogonal matrix and

A�1RA ¼
� 9

7 � 4
7

4
7 � 11

21

� �
:

Thus, R is a coincidence isometry of the lattice L (the co-

incidence index is 21). Denote the column vectors of A by

a1; a2. Let

b1 ¼ Rða1Þ � a1 ¼

�40
21

4
ffiffi
5
p

21

� �
:

Then the matrix of the reflectionRb1
under the canonical basis

is

R1 ¼
� 19

21
4
ffiffi
5
p

21
4
ffiffi
5
p

21
19
21

 !

and

R1R ¼
1 0

0 �1

� �
: ð8Þ

Let

b2 ¼ 2a1 � 3a2 ¼
0

�
ffiffiffi
5
p

� �
:

Then b2 is a scalar multiple of the projection of a2 with respect

to the orthogonal projection defined by a1. The matrix R2 of

the reflection defined by b2 under the canonical basis is the

matrix on the right-hand side of (8) and R ¼ R1R2.

Example 4.2. Let L � R2 be a lattice with the structure matrix

A ¼
a 1

0 b

� �
; ð9Þ

where a and b are arbitrary positive real numbers. Let the

column vectors of A be a1; a2. For this matrix, condition (4) is

equivalent to

a;
a

1þ b2
2 Q() a; b2

2 Q:

If this is the case, OCðLÞ is generated by the reflections

defined by the nonzero vector of L.

If a =2Q, but a=ð1þ b2Þ 2 Q, then b2 =2Q. To find the

condition for a reflection to be a coincidence reflection, we

only need to consider vectors of the form v ¼ xe1 þ e2; x 2 R

(these vectors need not be in L). Consider

ðv; a1Þ

ðv; vÞ
v ¼

ax

1þ x2
v ¼

xðbx� 1Þ

bð1þ x2Þ
a1 þ

ax

bð1þ x2Þ
a2;

ðv; a2Þ

ðv; vÞ
v ¼

xþ b

1þ x2
v ¼
ðxþ bÞðbx� 1Þ

abð1þ x2Þ
a1 þ

xþ b

bð1þ x2Þ
a2:

ð10Þ

If at least one of xþ b and bx� 1 is 0, then the fractions

involved in (10) are all rational numbers and the reflection

defined by v is a coincidence reflection of L. In the first case,

the vector v is orthogonal to a2; in the second case, the vector v

is parallel to a2. Assume that both xþ b and bx� 1 are

nonzero, and suppose that v defines a coincidence reflection of

L. Then the second equation in (10) implies that x 6¼ 0.

Furthermore, (10) implies that

ax

xþ b
;

bx� 1

a
2 Q: ð11Þ

Since a=ð1þ b2Þ 2 Q, (11) implies that

xð1þ b2Þ

xþ b
;

bx� 1

1þ b2
2 Q: ð12Þ

The second condition in (12) implies that there exists a q 2 Q

such that

x ¼
qð1þ b2Þ þ 1

b
: ð13Þ

Substituting (13) into the first condition of (12), we have

b2 2 Q, which contradicts our assumption. Thus, the only

coincidence reflections are defined by a vector that is parallel

to a2 or a vector that is perpendicular to a2.

Similarly, we can discuss the case that a 2 Q but b2 =2Q and

the case that both a; a=ð1þ b2Þ =2Q. In the first case, the only

coincidence reflections are defined by a1 or a nonzero vector

that is orthogonal to a1. In the second case, there is no co-

incidence reflection for L. To determine the group OCðLÞ, it

remains to consider rotations. If

R ¼
cos � � sin �
sin � cos �

� �

is a coincidence isometry of L, then

Rða1Þ ¼
a cos �

a sin �

� �
¼ xa1 þ ya2 ¼

axþ y

by

� �
;

Rða2Þ ¼
cos � � b sin �

sin � þ b cos �

� �
¼ x0a1 þ y0a2 ¼

ax0 þ y0

by0

� �
;

for some x; x0; y; y0 2 Q. In particular, we have
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by ¼ a sin �; ax0 ¼ � bþ
1

b

� �
sin �: ð14Þ

If sin � 6¼ 0, (14) implies that

b2 þ 1

a2
¼ �

x0

y
2 Q: ð15Þ

However, if one of a and a=ð1þ b2Þ is rational and the other

one is irrational, then (15) does not hold. If both are irrational,

then

ðaxþ yÞ
2
þ ðbyÞ

2
¼ a2

together with (15) will also lead to a contradiction. Therefore,

sin � ¼ 0 and R ¼ �I.

To summarize, we have the following.

Proposition 4.3. Suppose the structure matrix of L � R2 is

given by (9).

1. If a; b2 2 Q, then OCðLÞ is generated by the reflections

defined by the nonzero vectors of L.

2. If a 2 Q but b2 =2Q, then OCðLÞ ¼ f�I;�Ra1
g ffi Z2

2.

3. If a =2Q but a=ð1þ b2Þ 2 Q, then OCðLÞ ¼

f�I;�Ra2
g ffi Z2

2.

4. If a; a=ð1þ b2Þ =2Q, then OCðLÞ ¼ f�Ig ffi Z2.

It should be pointed out that there are many ways to

decompose an orthogonal matrix into products of reflections.

To see this, we just need to note that the identity matrix is the

product of any reflection with itself. It can be seen (say, by

considering planar lattices and rotations) that, for any integer

m> 0, there are orthogonal transformationsR of Rn such that

R
k are not coincidence isometries of the canonical lattice Zn

for all 1 � k<m, but Rm is a coincidence isometry of Zn. The

same is true for reflections, i.e. there are reflections Ri

(1 � i � m) such that any partial product of the Ri’s is not a

coincidence isometry but the product R1 . . .Rm is a coinci-

dence isometry.
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Baake, M. (1997). The Mathematics of Aperiodic Order, edited by
R. V. Moody, pp. 9–44. Dordrecht: Kluwer Academic Publishers.

Bollmann, W. (1970). Crystal Defects and Crystalline Interfaces.
Berlin: Springer.

Brandon, D. G., Ralph, B., Ranganathan, S. & Wald, M. S. (1964).
Acta Metall. 12, 813–821.

Duneau, M., Oguey, C. & Tahal, A. (1992). Acta Cryst. A48, 772–781.
Fortes, M. A. (1983a). Acta Cryst. A39, 348–350.
Fortes, M. A. (1983b). Acta Cryst. A39, 351–357.
Grimmer, H. (1973). Scr. Metall. 7, 1295–1300.
Grimmer, H. (1976). Acta Cryst. A32, 783–785.
Pleasants, P. A. B., Baake, M. & Roth, J. (1996). J. Math. Phys. 37,

1029–1058.
Porteous, I. R. (1995). Clifford Algebras and Classical Groups.

Cambridge University Press.
Rodrı́guez, M. A., Aragón, J. L. & Verde-Star, L. (2005). Acta Cryst.

A61, 173–184.
Warrington, D. H. & Bufalini, P. (1971). Scr. Metall. 5, 771–776.

research papers

114 Yi Ming Zou � Coincidence symmetry groups Acta Cryst. (2006). A62, 109–114


